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Free Surface Tracking for the Accurate Time Response
Analysis of Nonlinear Liquid Sloshing

Jin-Rae Cho*, Hong-Woo Lee
School of Mechanical Engineering, Pusan National University,

Busan 609-735. Korea

Liquid sloshing displays the highly nonlinear free surface fluctuation when either the external

excitation is of large amplitude or its frequency approaches natural sloshing frequencies.

Naturally, the accurate tracking of time-varying free surface configuration becomes a key task

for the reliable prediction of the sloshing time-history response. However, the numerical

instability and dissipation may occur in the nonlinear sloshing analysis, particularly in the long

time beating simulation, when two simulation parameters, the relative time~increment parameter

a and the fluid mesh pattern, are not elaborately chosen. This paper intends to examine the

effects of these two parameters on the potential-based nonlinear finite element method

introduced for the large amplitude sloshing flow.
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1. Introduction

One of the major issues in the numerical

analysis of large amplitude liquid sloshing is a

free surface tracking. It is because the free surface
configuration plays an important role not only in

the flow domain identification but also as the

kinematic and dynamic boundary conditions of

initial-boundary-va1ue sloshing problem. In ad

dition, a small error in the free surface tracking,

which is to be accumulated with the time integra

tion stage, may cause the numerical dissipation

and instability in the time response analysis of
nonlinear liquid sloshing (Chen et aI., 1996).

In order for the accurate time tacking of

the free surface configuration, various useful tec
hniques have been introduced. Nakayama and
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Washizu (1981) introduced an error correction

term into the dynamic boundary condition for the

boundary element formulation, and Okamoto
and Kawahara (1990) proposed the velocity cor

rection method based on the Lagrangian FEM

formulation. Chen et a!. (1996) used the implicit

finite difference method based on the Crank

Nicolson time marching scheme in which second

order numerical dissipation term was added to the

kinematic boundary condition to suppress the

numerical instability. On the other hand, Kanok

Nukulchai and Tam (1999) introduced a large

displacement fluid element based on total La
grangian formulation by employing the penalty

method to enforce the liquid incompressibility.

In the current study, the free surface configura

tion is tracked by time-integrating the kinematic
and dynamic boundary conditions making use of

a forward-difference time differentiation of the

free surface elevation and the predictor-corrector

method incorporated with the mass-conservative

remeshing scheme (eho and Lee, 2003). The
problem itself is formulated based upon the fully

nonlinear potential flow theory, so that the state
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Hereafter, the subscri pt 0 refers to the quantitles

measured in the fixed Cartesian co-ordinates.

By denoting ¢ (.<:0, yo: t) be the velocity potcn

tial, [hc continuity condition is de,cribed by the

Laplace equation:

Fig. I Liquid cOllwined in 2·J) I'Igid lank subject to

forced excitation

t
I
J<
o

J

ordinate systems, {Xo} fixed in space and {Xl
moving with the tan k, such that their origins arc

at the center of the stationary free surface and

their axes are taken parallel to each other. TllelL

a scalar quantity 1J can be expressed ill either 01'

two co' ordinate systems SLich that 1J (.<:a, Yo; t) =

i!J(x,.v; n. By denoting us(t) ~{d.x"/dt, dys/
dt} be the rigid tank velocity, we have (he

relations between tWO systems;

v V_-0, -

.... ---------./00 x·c.; u,~1

On the liquid -structure interrace, thc velocity

potential should satist\,

variable is the velocity potential. Meanwhile, ac·

cording to the least square method, the flow

velocity field is Interpolated from the velocity

potential field approximated, with second· order

finite elements.

The kinematic boundary condition governing

the frce surface configuration includes a convec

tion term (Currie, 1974), and which has been a

critical cause leading to the difficulty in the free

surrace time track i ng. 1n order to avoid the diffi

culty in dealing with the convection term, we

devise an alternative technique to time-integrate

the kinematic boundary condition. We directly

evaluate the time derivative Df the free surface

elevation according to the forward difference

5cl,cme and then update the free surf-"ce configu

ration making use of the predictor-corrector

n1elbod (Gill and Cullen, 1992). The time in

crement of for the forward difference scheme is

controlled by a parameter a(O<a51) defined as

the relative ratio to the time step size I:1t. Then,

the choice of a affectS the numerical accuracy and

stability in the free surrace time tracking. Besides,

the f1uid mesh pattern does also influence the free

surrace tracking accuracy even though the total

liquid volume is kept unchanged by the above

mentioned re-meshing scheme. It is because the

large amplitude liquid sloshing shows a high

singular'lty in the now field near the free surface.

Thc purpose of the current study is to cxaminc

the reliability of the free surrace tracking tech

niquc introduced into the potential-based non

linear finite elemcnt mcthod for large amplitUde

sloshing flow. Tn particular, the main observae

tion focuses on the effects of two key parameters,

the relative time-mcrcment parameter a and the

fluid mesh pattern, on the numcrical stability and

dissipation.

2. Problem Description

We consider a sloshing flow of inviscid in

compressible liquid in a tWO'dimcnsional rigid

tank or width 2d SUbjected to a rorced horizontal

excitation. In the stationary condition, liquid is

filled up to the height fh. For mathematical

description pmpose, we use two Carlesian co-

with the outward unit veclor n normal to the

structure boundary. In the fixed Cartesian co

ordinates, the kinematic and dynamic condition,

on the frce surface arc as follows:

(5)
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3. Time-Incremental Finite Element
Approximation

(17)

( 18)

du~

df
Of/' =-+\7q)h'\7¢h-gr~X

- s1:!t~, on DQft

In order to solve the above nonlinear sloshlllg

problem we divide the observation time interval t

into a finite number of sub-intervals such that

tn = nilt (n=O, i, 2, .. -). With initial conditions

(13)--(14) and the boundary condition (i5), we

solve tbe Laplace equation (12) defined in initial

flow domain Q O and boundary aao to seek ¢~.

With which we compute the now velocity field VO

and perform the free surface tracking. By time

integrating the kinematic and dynamic boundary

conditions (16) - (17) , we identify S-\ QI and oQl.
In this manner, the sloshing time response is to

be numerically analyzed,

Referring to Fig_ 2, we consider time stage i"
at which ¢~ and un arc to be sought with the

geometry and field quantities determined at time

stage tn-I. According to the Galerkin method,

we have the weak form of Eg. (12): find ¢~ such

that

(J 0)

( 11 )

K+(~_us)as_(a¢_us)=o (7)
of ox x Jx Dy Y

in which So (xo: t) is the vertical coordinate

YO(;'(Q; f) of the free surface.

Sincc the frcc surface fluctuation is a relative

motion with respect to the container, the moving

coordinates is usually preferable. By denoting

S(x; t) = So (xo; t) - y" (t) be the free surface

elevation 1'1'0111 the reference stationary level, to

gether with Eqs. (l) and (2), above free surface

conditions are rewritten as

¢=¢,,+¢p, ¢p=xu~+YU~ (9)

Substituting Eq. (9) into Eqs. (7) and (8) we

have

In the moving co-ordinate system, the velocity

potential ¢(x, y; t) can be split into two parts,

(Ph (x, y; t)) due to the internal sloshing flow

and ¢p(x, y; t) due to the lank motion, such that

It IS worth to note that the RHS in Eq. (11) can

be deleted because not only both terms are coor

dinate-independent quantities but also the veloc

ity potcnti<ll is a relative quantity lt1 space.

Then, the initial-boundary-valuc problem of

nonlinear sloshing now in the moving co-or

dinate system is formulated <IS follows:

lor every admissible velocity potential Jjr(x, y).

The corresponding essential boundary condition

on oQ!i is ¢~ determined beforehand by the free

surface tracking method described later.

By introducing nine-node Lagrange- type finite

clement basis functions {Ni }%'l and the nodal

potential vector ¢~, we approximate

(12)

with initial conditions

rjJn=--xuHo) '-yu;(OI. in QO

S=0, on DQJ·

(13)

( 14)

I~

stationOlY leVel
"

and boundary conditions

( I 5)

"Fig. 2 Sloshing flo\\' configuration at lime stage tn
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(19) nodal velocity vectors D~ :

substituting Eq. (19) into Eq. (18) leads to
vZ=NoD~, Q'=X, Y

[(¢7,=o

with lhc matrix [( defined by

(20)
4. Free Surface Tracking

From the velocity potential (p1, approx.imated, the

intermediate velocity field iY is computed ac

cording to

Owing to the Co continuity in the velocity poteD~

tial field, the intermediate velocity field becomes

to be discontinuous across element interfaces.

One may consider the linear interpolation of the

velocity values at Gauss integration points in

order to obtain the continuous velocity field with

lhe better accuracy. However, a small error in the

velocity computation doe~ not only <ltTect the

accuracy in the free surface track ing but also

accumulate with the time stage. [n order to mini~

III izc this crucial problem, wc first interpolate

clement-wise velocity fields with second-order

polynomials according to the least square meth

od. Let LIS denote v~ (a=x, 51) be the element

wise velocity components to be interpolated;

[(~hn (VN) T(VN) dv (2 J)

(22)

After obtaining the velocity potential aud the

flow velocity field, we integrate Eq. (16) to track

the free surt~1Ce rn +1 and Eq. (17) to determine

the essential boundary condition ¢;:-I-1 A mass-

conservative remeshing process folJows the free

surface tracking, whlle keeping the mesh rcgll

larity, in order to update the liquid mesh. In the

kinematic boundary condition (16), the major

feature is the convection term in the right hand

side. The influence of this term increases as the

slosh'lng amplitude becomes larger, and which

may cause the nu merical divergence, the high

frequency wiggle or the nurnerical dissipation, in

the sloshing time response (Chen et aI., 1996),

unless any special care is paid in the free surface

tracking. In the presellt study. Vie introduce the

direct differentiation 10 track lhe free surface

witho\\t causing tbe numerlcal instability.

Referri ng to Fig. 3, we predict the rree surrace

variation in the small ti me increment /St (3t =

allt, O<a< I) from the current time tll (lccording

to

(27)

(x;,v)j

----I .,.(X:.1 ")/+1

'1.(\'

, + ~/_ (JrjJ,.1Yi=Yi (j. -,,-.-
oj! (X"Y,)

(J/ t"

Here, a is defined by the relative time increment

parameter and (Xi, 51,.) the coordinates of node

Fig.3 Variation or the free surface In the ("ime

l11crC11lCll( Cit

(25)

And we define the element-wise errors by

where 1 stand for (J X 3) Gauss integration

poi Ilts. Then, six coefficients in valved in each

velocity component arc determincd from SIX. Slnl

ultancous equations constructcd from

From D~ interpolated, wc next calculate the ve

loeity values for individual clements and average

the nodal values for the common nodes. Finally,

the global continuous velocity Ilcld is illter~

polated using the same finite element basis func

tions used in Eq. (19) and the component--wise
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Then, the time (jerrvative of the frce surfacc ele

vation in Eq. (16) is directly calculated by the

forward diffcrence scheme

i on the free surface at time t". And, the eleva

tion of node i in the time increment Of can be

calculatcd through

(29)

(28)
, ,

t ' [+)'/+1-)'/(. ')
_i = Y.i -,- --------;- Xi-Xj

Xj>! -Xj

We ncxt apply the predictor-corrector method

composed 01' the cxplicit fourth-order Adams

Bashforth scheme (Golub and Ortcga, 1992)

and the implicit fourth-order Adams-Moulton

scheme (Golub and Ortega, 1992) given respec

tively by

In order to predict the rree surface elevation al

the next time stagc tMI . Then, wc relocate the

free surface nodes onlo the new Cree sur[~lce

JQF+l by moving only ill the verticil I direction.

as depicted in Fig. 4(a). As well, we calculate

the lOtal Iiqllid area according to the trapezoidal

rulc

Fig.4 Volume-conservative remeshing: (a) Reloca

tion of finite clement nodes; and (b) Correc

tion of the free surface nodes

(b)

}rh..1 ~ ar/Jh I _lr o¢J. (34)at {X} - Jt {X..,} at· 3y

we integrale Eq. (17) to specify the velocity

potential r/J~-I-l at the li'ee surface aQJ1+ 1 tracked.

l-J owever, the time derivative of the free surface

velocity potential in the moving co-ordinate sys

tem {X} is related to one in the semi-Lagrangian

liquid mesh {XM } as follows:

(30)

(31 )

VllI1=y,,+L1i[55.oLI_59KI
~ ~ 24 _ at n at II-l

+37-
ot I ~9}S I Jat 11-2 at "-3.

Then, the mean free-surface elevation Smean can

be calculated as follows: Smean=Atotl2d and the

nodal free surface heights ;;r+l are corrected (Cho

and Lee, 2003) such that SrI = Sr+ l
- Smean.

We next relocate all of internal nodes such that

fini te clemcn t nodes locafed in the sa me vertical

line are in uniform spacing. In this manner, the

free surl~lce is tracked by keeping the liquid mesh

unchanged and the liquid mesh is adapted so as

to keep the mesh regularity fairly. As a next step,

A -~A A -( I S1-1-1+S1tot - ,?..., i, i~ Xi+l - x" --2--
1::..: 1

(32) Th us, with respect to the lig uid mesb, the time

derivativc of the free surface velocity potential at

time stage tIl is rewritten as

(35)

After computing tbis time derivative, we apply the

same predictor-corrector method as in the free

surface tracking to specify the velocity potenti al

r/J~+l on the ncw free surface aQP+1
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mg. 5 Eflects of thc paramcter a: (a) On the I"rcc

surface elevation (at the right end X~O.5111)

(b) On the liquid volume conservation

becomcs smaller such that the time history re

sponses of thc free surface elevation at a=O.1

and 0.01 do not show a noticeable distinction.

On the other hand, the total liquid volume, re

fcrring to Fig. 5 (h), considerably decreases when

a is unrty, and contrary it slightly increases when

asO.l. ["rom these results, we found that the

choice of a near 0.1 is recommendable.

Next, we exam ine the effects 01' the i1uid mesh

pattern on the time history response of the free

surface elevation with a set by O. L Uniform mesh

and locally refi ned meshes are to be tested for

the numcrical stability and dissipation in two

simulation cases. ln case I, we sil11111atc the long

timc responsc of (he large beating phenomenon to

examine the numerical dissipation with timc. On

thc other hand, in case 2, we examine the numer

ical stability in thc shorttil11e history response by

5. Numerical Experiments

Thc numerical formulae derived so far were

coded into a test program written in Fortran, and

MSC/ratran was interfaced for the output visu

alizatioLl. Referring to Fig. I, Vie confine to large

amplitude sloshing [Jroblcms in which the rigid

tank is subject to a sinusoidal horizontal ex

cilation X S (t) = (f. sin cof. Based lipan the litera

ture survey on the nonlinear sloshing analysis we

considcr two simulation cases. Geometry and cx

citation conditloIlS of casc 1 which was takcn by

Chen ct a1. (1996) and Okamoto and Kawahara

(1990) arc as follows: d = 1.001, lh =0. 5 m,

a= ~9.3X 10-3 01 and w=O.9995wo (here, the fun

damental sloshing frequency (00 is 5.31384 rad/ s) .

On the other hand, those of ease 2 chosen by

Nakayama and Washizu (1981) are d of 0.9 m,

HI of 0.6 m, a of 2 X 10-3 m and w=0.9547wo

(0)0=5.76077 rad/s), respectively.

rn the beginning, the liquid domains III both

simulation cases werc uniformly discretized with

nine-node quadratic elements in the manner of

24 panitions in the horizontal direction and 12

partitions in the vertical direction. The timc step

,ize ,d! was set by 5 X 10-3 s for all simulation

cases presented in this paper. The predictor-cor

rector mcthod compo,ed of two fourth-order

schemes (30) and (3 I) is known as a highly

accurate time integration scheme with the trun

cation error of (,dOl. In addition, the time step

size was ehoscn through the preliminary para

metric convcrgence experiments to the tank \vidth,

the liquid depth and the excitation amplitude and

freq ucncy,

Wc first examine the dfect of the parameter a
011 the numerical dissipation and the liquid vol

ume change. This numerical experiment was done

with case I because the sloshing nonlinearity is

higher than case 2. It is worthy noting that this

prelIminary simulation wa, performed without

correcti ng the t!'ec-surface height according to

Eq. (33) so thaI errors in the frcc surface height

and the total liquid volume are allowcd to accu

mulate with time. Referring to Fig. 5(a), the

numerical dissipation is getting suppressed as a
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comparing with the eXLstmg reference solution.

Differing from the real liquid sloshing including

the damping effect, its numerical simulation with

an ideal flow assumption should kcep the same

amplitude in repeating events unless the numeri

cal dissipation does accumulate (Faltinsen et aI.,

2000) .

Long- and short-time history responses pre

dicted by the uniform mesh of the free surface

elevation ill cases I and 2 are represented res

pectively in Figs. 6 (a) and 6 (b). Two uniform

meshes for both simulation cases are generated

with the same mesh partitions (i.e. 24 times 12)

and the free surface elevations arc measured at the

right ends (i.e. at x=O.5 m in case I and x=0.45
m in case 2). Referring to Fig. 6 (a), one see that

the uniform mesh failed to simulate the beating

phenomenon such that not only the first beating

wave is getting to be distorted but also the beat

ing amplitude shows a monotonic decrease with

the increase of beating events. Furthermore, the

uniform mesh produces the numerical instability

at the beginning of the free surface time history, as

indicated by circle A in Fig. 6 (b) . Differing from

the reference solution, the free surface response

predicted by the uniform mesh starts with a

down ward fluctuation.

The main reason leading to these poor results

is because the uniform mesh could not sufficiently

capture the flow singularity. As shown in Fig. 7

(a), a large amplitude liquid sloshing exhibits

the significant singularities in both flow velocity

and dynamic pressure fields at the free surface

and left and right ends of tank. Referring to the

paper by eha and Oden (1997), an etfective way

to capture the singularity is to use locally refined

meshes. So, we refine the both uniform meshes in

the manner represented in Fig. 7 (b).

As represented in Fig. 8 (a), the locally refined

mcsh successfully prevents the numerical dissi

pation occurred in the long-time history response

of tile large beating phenomenon such that beat

ing events display almost same wave patterns and

( )

d I. I~ If\:

( I

I!>C 0 uni~ rm nI h 011 - tOle hI 0

of thc beating phenomenon (case 1); (b)
Numerical instability at the begInning (case
2)
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Fig. 7 Singularity and mesh refinemcIlt; (a) Flow
velocity and dynamIC prcssure fileds (case l);
(b) Local refinement of fluid meshes
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simulation of the long· time beating phcLlomenon

and the stable prediction of the iLlitial sloshing

time history response. The main reason has been

found that uniform mesh can not sufficiently

capture the singularity in the flow velocity field.

However, the use of locally refincd mesh success

fully overcomc the numerical dissipation in the

long-time beating simulation and the numerical

instability occurred at the beginning of the slosh

ing time history response.

6. Conclusion

(b)

Fig. 8 LJ se of locally refined mesh; (a) Long-time

history of the beating phenOl)lenon (case I);

(b) Numerical instability at the beginning

{case 2)

amplitudes. As well, the locally refined mesh

overcomes the numcrical instability occurred at

the beginning of the free surface time history

rcsponse, as represcnted in Fig. 8 (b), where the

previous inconsistent downward l1uctuation dis~

appears completely.
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table to minimize both the numerical dissipation

and the total l1uid volume change with time. On
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